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Big Data Analytics Today

Disk-to-disk map-reduce data




Next Generation Big Data Analytics:
Improved Decision Making

m Higher performance = faster decisions
m Bigger data sizes = better decisions

= Low latency big data processing = interactive
decisions

= Processing on live data streams = real time
decisions

m Higher productivity = easier decisions
= More intuitive than map-reduce with key-value
pairs
s Simple programming for complex tasks
Data transformation
Graph analysis
Predictive analysis using machine learning




Next Gen Big Data Analytics Must
Embrace Heterogeneous Parallelism

Fine grained parallelism
is the only way to get
high performance and
performance/watt




Heterogeneous Parallel
Programming

Muticore




Huge Performance Variation:
Image Filtering OpenMP Assignment

Optimizations:

* Precomputing twiddle

~3 orf:lers of « Not computing what isn’ t
magnitude “ 10111 part of the filtering

*Transposing the matrix

*Using SSE




Big-Data Analytics
Programming Challenge

Data Analytics T
Application Pthreads 2= Multicore
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Big-Data Analytics
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Domain Specific Languages

m Domain Specific Languages (DSLs)

s Definition: A language or library with restrictive expessiveness
that exploits domain knowledge for productivity and efficiency

= High-level, usually declarative, and deterministic

p e n G L MATLAB

MySQOL:




Benefits of Using DSLs for High
Performance

Productivity

e Shield most programmers from the difficulty of parallel
programming
ANl ¢ Focus on developing algorithms and applications and not on low
| level implementation details

Performance

e Match high level domain abstraction to generic parallel execution
patterns

e Restrict expressiveness to more easily and fully extract available
parallelism

e Use domain knowledge for static/dynamic optimizations

Portability and forward scalability

e DSL & Runtime can be evolved to take advantage of latest
hardware features

e Applications remain unchanged

e Allows innovative HW without worrying about application portability




Our Approach: Data Analytics DSLs
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Delite: DSL Infrastructure
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Delite: DSL Examples

. . Data Data Social network S

Domain Machi ,
Specific Data Prep Data Query Graph Alg. Lea:rnlir:le Convex Opt.
- ! - g OptiCVX

DSL DSL DSL DSL DSL DSL
Infrastructure Compiler Compiler Compiler Compiler Compiler

Heterogeneous
Hardware




Big Data Analytics Systems

Berkeley in memory framework
for interactive queries and
iterative computations

Processing

Storage
management

Cluster resource
management




OptiQL

// lineltems: Table[Lineltem]
val g = lineItems
Where(_ .1 shipdate <=
Date(“1998-12-01"))
GroupBy(1 => 1.1 linestatus)).
Select(g => new Result {
val linestatus = g.key
val sumQty = g.Sum(_.l1 quantity)
val sumDiscountedPrice =
.Sum(1l => 1.1 extendedPrice*
(1.0-1.1 discount))
avgPrice =
.Average(_.l extendedPrice)
val countOrder = g.Count
})
OrderBy(_.returnFlag)
ThenBy(_.lineStatus)

In-memory data
querying

LINQ, SQL like

Key operations are
query operators on the

Table data structure
m User-defined schema

Optimizations:
s Fusion eliminates
temporary allocations

m Eliminate fields not used
in query




TPC-H Query 1 on 20 x 4 cores
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O o L OptiML: An Implicitly Parallel Domain-Specific
pt'M Language for Machine Learning, ICML 2011

m Provides a familiar (MATLAB-like) language and API
for writing ML applications
m Ex.val ¢ = a * b (a, b are Matrix[Double])

m Implicitly parallel data structures

s Vector[T], Matrix[T], Stream[T]
m val c = (©::100) { i => i*2 } // vector constructor

= Implicitly parallel control structures
= sum{...}, (0::end) {...}, gradient { ... }, untilconverged { ... }

= Allow anonymous functions with restricted semantics to be
passed as arguments of the control structures




OptiML: k~-means Clustering

untilconverged(mu, tol){ mu =>




OptiML: k~-means Clustering

untilconverged(mu, tol){ mu =>

val ¢ = (@::m){i =>
val allDistances = mu mapRows { centroid =>
dist(samples(i), centroid)

}

allDistances.minIndex




k-means Clustering

untilconverged(mu, tol){ mu =>

val ¢ = (@::m){i =>
val allDistances = mu mapRows { centroid =>
dist(samples(i), centroid)

}

allDistances.minIndex

val newMu = (@::k,*){ cluster =>
val weightedpoints =

sumRowsIf(O,m)(i => c(i) == cluster){ i => samples(i) }

val d = c.count(i => i == cluster)
weightedpoints / d

}

newMu

« No map-reduce
 No key value pairs
« Efficient cluster implementation




Machine Learning
on 20 x 4 cores: Library vs. Compiler
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Machine Learning
on 4 x 12 cores and 4 x GPU
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OptiGraph

o QDISL for large-scale graph analysis based on Green-
ar

s A DSL for Real-world Graph Analysis

s Green-Marl: A DSL for Easy and Efficient Graph Analysis
(Hong et. al.), ASPLOS ‘12

m Data structures
s Graph (directed, undirected), node, edge,
s Set of nodes, edges, neighbors, ...

= Graph iteration

= Normal parallel iteration, Breadth-first iteration,
Topological Order, ...

= Deferred assignment and parallel reductions (Bulk
synchronous consistency)




OptiGraph: PageRank

Implicitly parallel iteration }

for(t <- G.Nodes) {
val rank = ((1.0 d)/ N) +
d * Sum(t.InNbrs){w => PR(w) / w.OutDegree}
PR <= (t,rank)
diff += Math.abs(rank - PR(t))
}

Deferred assignment and scalar reduction

Writes become visible after the loop completes




Green-Marl vs. GPS (Pregel):
Lines of Code

Average Teenage Follower (AvgTeen)

PageRank 19 110
Conductance (Conduct) 12 149
Single Source Shortest Paths (SSSP) 105
Random Bipartite Matching (Bipartite) 225
Approximate Betweeness Centrality Not Available




Green-Marl vs. GPS (Pregel)
on 20 x 4 cores
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Conclusions

m DSLs are the key to next generation big data
analytics

= High Productivity: higher level abstractions
s High performance: fine-grained parallelism

m Sophisticated compilers needed to make sense of
high-level, domain-specific abstractions

m Performance advantage of compiling DSLs is
substantial

= http://ppl.stanford.edu




DSLs: Barriers to High Performance

m Problem 1: abstraction penalty

s Staging: remove abstraction programmatically using
partial evaluation

m Problem 2: compiler lacks semantic knowledge

s Extend compiler with high-level knowledge
E.g. Teach compiler linear algebra

m Problem 3: compiler lacks parallelism knowledge

s Extend the compiler with parallelism and locality
knowledge

m Solving any of the problems alone will not result
in high performance




MSM Builder Using OptiML
with Vijay Pande

Markov State Models
(MSMs)

MSMs are a powerful means
of modeling the structure
and dynamics of molecular
systems, like proteins

MSMbuilder Kinetic Clustering

OptiML
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